An insight into different Resolutions

Abstract

Resolutions - 1400x1050 and $1024 x 768$ have been the common resolutions for a mumber of years now, and in recent times $1920 x 1080$ (Full HD Format) has also become popular. Now with the new projectors 1600×1200 and 1920×1200 are also being bandied about.

This article will hopefully help to explain what these mean. This is not written as a technical document to explain how projectors work or how pixels are formed or what they are - It is to explain the basics of what happens when you project different pixel resolutions on a screen, using different settings on a projector.

The resolution you project largely depends on what is available on your projector. The photos then need to be sized to fit the maximum chosen projector resolution otherwise the projector will resize them down to what it can project. The following should help explain what is meant by resolution.

The format we have been used to in the SPF and PAGB for a number of years is $4: 3$ i.e. 1400×1050 (1024×768). I have used a $4: 3$ proportion screen to demonstrate how different resolutions will look on this, assuming the image is zoomed to make the photo as large as possible on the screen.

If we set our projector to project 1400×1050 it will project a picture made up of a grid of squares (that we call pixels) $\mathbf{1 4 0 0}$ of them width wise and 1050 of them high. (You can see the squares on some types of projectors, others will be more difficult to see due to the technology they use). When the projector is set to 1400×1050 - It can't project any more pixels than this it must fit any image into that grid. (If you want to show more pixels you must choose a different resolution setting on the projector.)

When our picture is projected it is projected in the same grid of squares. If you zoom in you will see each individual pixel. Right Hand Image shows details from the red area below.

This is why we require to size our picture to 1400 maximum pixels wide and 1050 maximum pixels high. (At this maximum size it will fill the $4: 3$ screen)

If you don't size the picture; the projector will throw all of the extra pixels away by cleverly choosing the ones that it thinks gives the best representation of the photograph. This is why we presize our images to achieve the best quality, matching every pixel that the projector can use i.e. 1400×1050 max

An insight into different Resolutions

The following show how images pre-sized to 1400×1050 and 1024×768 will look on your screen when the projector is set to 1600×1200.

An insight into different Resolutions

1400

1050

This portrait image was sized as 1050 pixels high.

The landscape was sized as 1400×1050.

The one on the right was sized as 1024×768.
Obviously you could fill the screen with any of these images by zooming in, but you can't do that for every image, hence why you set the projector up for the biggest picture it can project i.e. to the projector 'grid' of 1600×1200 (to accommodate photos sized up to 1600×1200) This becomes your 'projectable area'.

Now let's look at a couple of the other popular resolutions; 16:9 and 16:10 on the same projector screen as above (both designed to benefit wider format pictures)

Firstly; 1920x1200 or 16:10 - This means the projector projects a grid of squares 1920 across and 1200 high, but because it is constrained by the width of the screen it can't now fill all of the area it did before.

${ }^{1200}$ If we have a look at a 4:3 proportion image on this projector setting (Left), (1600×1200) we can see that this also projects smaller as it has to fit in to this new 'grid'. It is now only 83% of the projectable area.
The portrait image is again contained within that grid (max. 1200 pixels) so it appears smaller (below) It is now only 47% of the projectable 'grid' area.

An insight into different Resolutions

This format gives the advantage of a wider format photo (even a panoramic or letter box).

But; This means that the largest a $4: 3$ format picture can be on this screen is 1440×1080, only 75% of the available projectable area.

It's useful to note that although this resolution has become popular, this Full HD resolution is already being superseded by the newer Ultra HD/4K etc formats even for TVs.

16:9 Full HD - 1920×1080 has been the more common of these resolutions

When this is set on the projector a grid of 1920 squares (Pixels) across and 1080 high is used.

This fills the screen width wise but the height is now much less than the $4: 3$ that filled this screen previously.

This affects the portrait image most though as it can now only be 1080 pixels high, only 42\% of the projectable area.

For both 16:9 and 16:10 we have shown the biggest size that pictures can be projected within the resolutions set on the projector (shown as a 'grid').

For the advantage of being able to project a wider image comes the trade-off, that $4: 3$ format pictures become much smaller. This particularly affects the 'portrait' images that are already a much smaller image on the screen even at 4:3. A summary is shown below -

At 4:3-1400×1050 or 1600x1200 a portrait image is only 56% of the available area (Currently).
A landscape format picture can use 100% of the available area (Currently).
At 16:10-1900x1200 a portrait image is only 47% of the available area.
A 4:3 landscape image is only 83% of the available area.
At 16.9-1920×1080 a portrait image is only 42% of the available area.
A 4:3 landscape format picture can use only 75% of the available area.

An insight into different Resolutions

Obviously the smaller images (e.g. 1024x768) are also going to appear even smaller than they were shown on the $4: 3$ resolutions above.

There are other formats available to us, but these three formats are the only ones currently listed on most Projectors and Laptops. Some software requires to project at the projector resolution, or it will distort the picture.

The NEW Canon Projectors now being used by the SPF and PAGB require us to use these formats to enable us to use all of the settings available to us. For example: we require to use these formats to use the tilt shift lens facility to its full advantage.

Screen Size - To ensure our images are projected physically as big as they are at present - with these 16:9 and 16:10 proportions, our only other option would be to consider having a different format of screen.

In this image on the right, the 16:10 format image 'grid' is shown, this time in blue, showing a portrait image filling the screen. This should give a guide to how much wider the screen has to be.

The image on the left shows how much bigger this screen would have to be to fill the screen with a portrait image at 16:9 (image area 'grid' shown in red).

The Size of Room will dictate the physical size of screen that can be used.
This is not a problem at our Championships where there is plenty space.
But; at Clubs or small venues, where space is already very tight, this would be difficult to accommodate. Bear in mind that it's not only the physical size of the screen you have to consider but also that your Judges will also need to sit further back from the larger screen so they can appreciate the whole picture.
8^{\prime} Screens are the standard requirement for all of the SPF Competitions at the moment.

Note - Remember that as you choose bigger resolutions - you will also have to accommodate bigger file sizes. The following are meant as a very rough guide -
$1400 \times 1050 \quad 4 \mathrm{Mb} ; 1920 \times 1080 \quad 6 \mathrm{Mb} ; \quad 1600 \times 1200 \quad 5.5 \mathrm{Mb} ; 1920 \times 1200 \quad 6.5 \mathrm{Mb}$

